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ABSTRACT: An experiment was conducted in the Sargasso Sea to measure the effect of
refraction on underwater explosion shock waves. Sound velocity profiles were
measured during the experiment. Eight-lb and 900-lb charges were detonated •t
precisely controlled depths. The explosion pulses at the close-in (thermocLine-
related) caustic and at the first convergence zone were measured by a vert'cau
array of gages and recorded. The measured shock wave peak pressures, impuinss, and
energies are compared with what might be expected under isovelocity conditions.
Some of the shock wave pulses and frequency spectra are presented. A considerable
enhancement of pressures and energies was observed.
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REFRACTION OF UNDERWATER EXPLOSION SHOCK WAVES:
SARGASSO SEA MEASUREMENTS

1. INTRODUCTION

1.1 Earlier studies have indicated that gradients in sound velocity can
influnce the propagation of shock waves (references 1, 2, 3, 4). Because of
refraction, the pulse shapes (pressure vs time) are considerably distorted from the
shapes that would be expected in isovelocity water. The regions of ,'hock wave
enhancement are of interest, particularly caustics. Caustics are focal surfaces
where the strongest energy focusing occurs.

1.2 In April and May 1966, NOL conducted a series o? tests in the Sargasso
Sea to investigate caustics in the ocean. Convergence zone caustics were of
primary interest. Convergence zones are regions -where sound or explosion pulses that
propagate along deep ocean paths are bent upward and focused by the sound velocity
gradient in the ocean. Some measurements of close-in cau-tics were also made.
These tests were in several ways an extension of tests made in the Dickerson quarry
(reference 4). Both series concentrated on measuring shock wave pressure histories
at the caustic with a relatively close gage spacing. The two experiments differed
in size. The Sargasso Sea experiment had much greater ranges and larger ratios of
range to charge dimension. The convergence i3ne caustic was at a relative minimum
in range. (A caustic occurs when the derivetive of range along ray paths at a
given depth with respect to initial ray angle is zero. This can be either a
relative minimum or a relative ma,-imum in range.) The caustics in the juarry and
the close-in ocean caustic (due to the surface thermocline) were at rel•0tive maxima
in range.

1.3 Some theicetical treatments predict that the caustic thickness is
dependert on the charge dimensions or, equivalently, the frequency content of the
shock wave pulse. The quarry results tended to show this. For this reason, two
charge sizes were used in the ocean, 8 pounds and 900 pounds.

2. EXPERIMENTAL PROCED'JRE

Most of the details of the experimental setup are described in reference 5.
These details will be summarized here. Two ships were involved in the experiment,
as shown in Figure 1. The principal task of the M/V MCEANIC was the handling of
explosive charges. The USNS LYNCH had equipment to record the shock wave. The
ship loca';ions, shot times, charge weights, and depths ,! bursts for the shots
analyzed in this'\-port (duds, equipment checkouts, etc. are Cmitted) are given in
Appendix A.

2.1 GAGES

2.1.1 The gage array consisted of 100 hydrophones spaced along a 200-foot
vertical distance. They were spaced every three feet from 0 to 57 feet (measured
from the top), every one foot from 57 to 105 feet, and every three feet from 107 to
200 feet.

1
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2.1.2 The gages were Massa type 201 hydrophones. Each of these was
mounted on a gage-signal amplifier (GSA). The primary purpose of the amplifiers
was to provide impedance matching between the hydrophones and signal cables. The
GSA's also incorporate padding capacitors to reduce the sensitivity of the hydro-
phones to avoid overloading the recording system. By changing the capacitance in
parallel with the hydrophones, the sensitivity could be varied so that !, 4, 16, or
80 psi would produce a full scale deviation on the recorders. Receipt of the shock
wave by a triggar gage positioned in front of the array triggered relays in the
GSA's and set the proper gain just before the shock wave was recorded.

2.1.3 Because the type of hydrophone that it was necessary to use to
record the low pressures encountered in this experiment was known to have
irregularities in its response, every effort was made to obtain as accurate a
calibration as possible. The hydrophones were calibrated by a dead weight .ta ic-
pressure release apparatus before the experiment. After the experiment, the
acoustic response under pressure was checked (reference 6). The response varied
up to 50% (n2dB) for particular combinations of pressure and frequency, but -,here
was no consistent trend among the samples tested. Most of the hydrophones decreased
in sensitivity with increasing hydrostatic pressure, but some increased in
sensitivity or remained constant. For a single bydrophone there was no uniform
trend with respect to frec-'t.ncy or hydrostatic pressure. The possibility ýhat some
of the hydrophones were consistently high or low with respect to neighboring

hydrophones was also investigated and was discounted.

2.1.4 The gage signal amplifier cases were a source of ringing for the
hydrophones. This was shown in the acoustic response as a sharp drop somewhere
betwe.in 6000 and 9000 Hz. The unmounted hydro-phones had a smoother (but still
uneven) response. Attempts to filter out the ringing by computer processing of the
digitized signal were unsuccessful.

2.2 RECORDERS

2.2.1 Three different systems were used to record shock wave pressures.
The primary recorder was an Ampex FR-600 magnetic tape recorder, which was used on
all shots. The FR-600 provided 13 channels of shock wave recording. Oscilloscopes
(Tektronix RM 565) were connected in parallel. "*o eight of the FR-600 channels.
Nine special recorders, called SPIN DRIFT recorders after the name of the project
for which they were originally designed, were t.sed on some shots. These provided
up to 11 channels of shock wave recording each.

2.3 DETONATING SYSTEM

2.3.1 Because an accurate hydrostatic pressure triggered detonating
system was not available, a special wire controlled firing system was used. A
measured length of wire was on a spool attached to the charge. The other end of
the wire was attached to a float. When the charge sank tr the firing depth and
unreeled the wire, tension oix the wire pulled a pin on the firing device and fired
.i:e charge. Price (reference 5) estimates the depth of burst to be accurate to
±15 feet.

3
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2.4 OPERATIONAL PROCEDURE

2.4.- The general procedure was as follows: Relatively crude ray
tracing calculations were made aboard ship, using the velocity profile measured at
the test site, to predict the approximate range to the caustic. The ships
separated to the predicted range, eight-pound charges were dropped directly off the
OCEANIC, and the shock wave was re2orded on the FR-600 aboard the LYNCH. The
FR-600 records were promptly pla ed back on a Honeywell Visicorder. From the
arrival time differences (see 5.1.1) it was possible to determine the distance from
the caustic. The range was then adjusted so the gage string would coincide with
the caustic. When it appeared that The range had been adjusted properly, the SPIN
DRIFT recorders were used to record an. eight-pound shot and obtain a detailed
picture of the caustic with this charge size. After this vas done successfully, a
900-pound charge was launched, fired,and recorded with all recorders. This
procedure was repeated with different combinations of charge and gage depths.
Jarious operational problems, and the fact that the range to the caustic shifted,
prevented this procedure from being strictly followed. The conditions for the
shots analyzed in this report are shown in Appendix A.

2.5 OTHER INSTRUMENTATION

2.5.1 An ACF (now NUS) TR-l velocimeter was carried aboard the OCEANIC.
Velocimeter casts were taken at night and at times when the use of the velocimeter
would not interfece with the dropping of charges. A table of casts from Price's
report (reference 5) and the velocity-depth curves are presented in '3ppendix B.
The data were used at sea for making rough predictions of caustic range and are
indispensible for any theoretical calculations that are to be compared to the
results of this experiment.

2.5.2 There were some velocimeter !asts taken from the LYNCF, but they
were not used in ana]yzing the data from the cruise.

2.5.3 Many bathythermograph casts were taken from the LfNCH. These
provided information on sound velocity near the qurface more frequently than could
be measured with the velocimeters. Other instruments used included a Decca Hi-Fix
ranging system for precisely determining the distance between ships.

3. SOUND VELOCITY

3.1 SOUND VELOCITY PROFILES

3.1.1 Graphs of tne soiud velocity profiles measured from the OCEANIC
are presented in Appendix C. These are all based on the rav outputs from tfr'
velocimeter. The slight corrections for nonJ.1nearity of the velocimeter and the
change of density of water were not made. Tne velocimeter was temperature
comDensated so no correction had to be made for temperature.

3.1,2 Cast No. 11 was held at 2500 f et, approximately in the m~ddle of
the main thermocline, for several hours to observe internal waves. The depth of
the velocimeter .ras varying because of shir motion, at the same time the veloci•L
was varying because of internal waves. To rnake a rorrection for ship motion it was
assumed that the slope of the thermocline remained cc.. :ant while it moved up and
down (Fig. 2).
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FIG. 2

A and B represent, points on the

thermocline while it is in the same

posit, on. C is a point on the thermocline

.- • when it is shifted upward.

C

R. M. Barash of the Naval Ordnance Laboratory plotted the internal wave by this
method. His result is shown in Figure 3.

3.2 PRCFILE VARIATIONS

3.Ž,L 1The measured profiles were used for further -tudies. They were
fitted with curves that were used a,, -1pat to ray tracing prcgrams.

3.2.2 Profile 12, sho i:. Figure 4, taken immediately after the
internal wave measurements, waE j3,.d for a computational study of the effect of
internal waves. The fitted pr',"ile had two isovelocity layers placea in such a way
that the thermo,,!-ine could o-, shifted up or down. With a maximum excursion of
250 feet, the range to the uaLutic shifted by abouIt 600 feet.

i
3.2.3 Another computational study was done to get quantitative estimates

of the effect of profile detail on the caustic range. Figure 5 shows the two ways
in which Profile 21 was varied. The higher minimum velocity, representing an
exaggerat:1on of the detail found ac the velocity minimum, produced a shift in the
caustic range of 150 feet. The entire upper portion of the profile was shifted as
shown. Thit produced a shift in caustic range of 750 feet. The upper portion of
the profile kAid not change by this magnitude during the experiment, but greater
changes do occur with the changing seasons over the course of a year.

3.2.4 The slight effect of the variation of the velocity minimum
indicates that iV: is not nectssary to fit this portion of the profile precisely.
In any case, fitting the fine detail would be difficult. That the ray diagram, is
not very sensitive to the upper layers shoild not be entirely unexpected. Most of
the ray travel is in the lower layers. For some comparisons of theory with this
experiment it is adlequate to use a single profile representative of the entire
experiment rather tnan match specific profiles and shots. Profile 21, taken in The
middle of the exper,:qent, uest represents the mean of several profiles and has been
the most frequently used.

4. RAY PATTERN

4.1 Before going into details of shcck wave measurements, a general overall
description of the rui pattern and the types of pulses to be expected is in order.

h.2 A typical "otuid velocity profile and ray diagram for the experiment are
shown in Figure 6. The -hock ;ave rays that start downward are bent upward by the

N 5
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deep velocity gradient and focused near the surface at the convergence zone where
the gage array recorded the shock wave pulse. The rays that start upward are bent
downward by the sound velocity gradient of tne surface thermocline ana'focused at a
range of a few miles. The upward-starting rays eventually return to a shallow
depth at the first convergence zone where they again form a caustic, but at a range
miles beyond the recording ship.

4.3 The general pattern of shock wave arrivals at the convergence =on6 is
shown in Figure 7. There is a single high amplitude arrival very near the,caustic,
a single arrival in the shadow zone that gets weaker with distance from t'he caustic,
and a pair of arrivals on the other side of the caustic. The time separation of
the two arrivals increases with distance from the caustic. The shock wave pressures
reflected from the surface are tne negative of the direct arrivals. If the gages
are near the surface it is possible to locate them so that they receive both the
direct arrivals in the vicinitj of the direct caustic and tle reflected arrivals
in the vicinity of the reflected caustic, and this was accomplished on two shots,
119 and 120.

4.4 In addition to the convergence zone arrivals, there were surface chennel
arrivals. The sharp negative sound velocity gradient at the surface and the slight
positive gradient extending to a depth of 1200 feet formed'a zound channel that
confined the nearly horizontal rays. The many turning points of the suri'ace
channel rays and their greter dependence on local inhomogeneities makes them
harder to predict than the convergence zone rays. In general, the surface channel
arrivals were rather weak, but on one shot they were strong enough to trigger the
recording system.

5. CONVERGENCE ZONE SHOCK WAVE DATA

As indicated by the previuus discussion, the main purpose of the operation was
to measure shbck waves, and the bulk of the measurements were of shock waves. Other
measurements ,iere incidental to siock wave measurements or were measurements of
environmental factors that might affect shock waves.

5.1 ARRIVAL TIME DIFFERENCES

5.1.1 The easiest data to reduce was that for arrival time difference.
This was done at sea for operational purposes and later, more precisely, in the
laboratory. The arrival time dif'ference, At, was taken to be the time from the
middle of the first sharp rise in pressure (the point normally regarded as the

4inning of a shock wave) to the second pressure peak.

FIG. 8

10
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By ray theory, At = 0 only on the caustic surface. Recent theoretical work
(reference 7) indicates that there is a region of finite thickness where At = 0.
However, when we extrapolated the curve of arrival time difference vs depth to find
a depth where At = 0, we very nearly located the depth of highest peak pressure.
Figures 9 and 10 show the various caustic positions. The range to each point was
measured by the DECCA system. The depth of the caustic was determined by
extrapolation of the arrival time differences from the gage string to At = 0. To
show the quality of the data used in getting caustic locations, two of the arrival
time vs depth curves are reproduced as Figures 11 and 12. Shot 26 is one of the
worst for scatter. A shift of 60 feet in the inferred depth of the reflected
caustic could be effected by choosing a different line through the points. Shot 67
is about average in the amount of scatter.

5.1.2 General]y, the arrival time difference increased linearly with
distance from the caustic. The deviation from linearity very close to the caustic,as shown in the Shot 67 data, is common.

5.2 PEAK PRESSURE

5.2.1 Shock wave peak pressures were measured for all shots that were
recorded. This data is presented graphically in Appendix E. The peak pressure of
a single arrival and the first and second peaks of a double arrival are
distinguished by different symbols. Since pressure histories in the double-arrival
region can be predicted reasonably well, measurements were colicentrated near the
caustic. Some detailed pressure-time curves are shown in Appendix F.

5.2.2 Several things should be noted about the peak pressure readings.
Most were derived from the analog plajouts of the magnetic tape recordings. Since
the amplitudes were small and difficult to read, comparison with oscilloscope
recordings and digital playouts were made whenever possible.

5.2.3 The scope records generally showed slightly lower pressures than
the tape playouts. This may be explained by the nature of the pressuT pulses and
the methods of recording. There was a slow, small rise in pressure just before the
shock front. The oscilloscopes were triggered by t!,e sharp shock front. The slow
rise was not observed on the scopes. The short baseline that preceded the shock
front on the scope records was at the end of the slow rise and was not at ambient
pressure. The baseline for the tape records was drawn through the record just
before the slow pressure rise. The digital playouts produced essentially the same
peak pressure as the analog playouts, indicating that the analog playouts were
correctly read in spite of difficulties.

5.2.h On some graphs of peak pressures vs depth, a double arrival above
the caustic is indicated. Most of these are probably not real. On the visicorder
playouts what may be another peak can be seen. On all the shadow zone records that
were digitized and plotted at high resolution, the other re~k turned out to be an
insignificant wiggle lost in the general noise level. These measurements were
-orrected on the graphs, but the others remain as originally read.

5.2.5 The measured peak pressures were compared with those predicted for
isovelocity water by similitude ec-ations (Appendix D). The pressure _.,,plitude
factors at caustics were often %8. On Shot 82, and that shot oniy, wt observed an
amplitude factqr of 12.

11
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5.2.6 Digitization of the analog records and computer processing were
performed on the shots we thought most useful or informative. These were Shots
82, 119, 120, 151, and 154. On three shots, 82, 151, and 1514, we measured a
continuous region, from the shadow zone, through the caustic and into the double-
arrival region. On Siots 119 and 120, the reflections from the surface of pulses
that would otherwise have passel above the gage string, enabled the gages to cover
an effective vertical extent of 400 feet instead of the normal 200 feet. The
immediate surface reflection on 119 and 120 cut off the pulses on the upper gages
and reduced peak pressure, impulse, ard energy. This effectively created a gap
near the surface in the region covered by the gage string. Tese shots, however,
were able to provide simultaneous me'asurements far into the shadow zone and double-
arrival region.

5.3 ENERGY AND IMPULSE

5.3.1 The shock wave impulse and energy were calculated for all the
digitized records. Comparisons with isovelocity values are presented in
Appendices G and H.

5.3.2 The s'iock wavr- impulse is defined as the integral of pressure with
respect to time. The integration is done from the beginning of the pulse to an
arbitrary limit, which is, for unrefracted shock waves that exhibit E. nearly
exponential decay, customarily 5 or 6.7 times the initial decay constant, P.
Because of the irregular pulse shapes that were observed in this experiment and the
difficulty of defining a time constant, a different limit criterion must be used.
Barash and Goertner (reference 4) used the time tt whliih the pressure fell to .07
of the initial peak value. For an unrefracted pulse this corresponds to )0.
However, the pulses they examined exhibited, like an un.-efracted shock wavw an
asymptotic Recay to zero press'.ure, while the pulses examined here quickly drop
below zero pressure and stay below zero pressure for a relatively loihg time. The
only clearly distinguishable and reproducible limit for our integrations is the
crossing of the zero pressure level and this is the time limit that is used here.
The magnitude of the impulse of the negative portion of the shock wave exceeds that
of the positive portion of the shock ware. If the integration of impulse were
carried to the point where later pressures were very low, the total impulse on all
records would be negative.

5.3.3 The impulse obtained by integrating to the time of the crossing of
zero pressure varied only slightly, ranging from .7 to 1.5 0 f chat predicted by the
similitude equations. The variation was less on any one shot. There was a trend
for the impulse to increase steadily with depth, similar to the trend noted by
Barash and Gcertner (reference 4).

5.3.h The shock wave energy flux density, commonly referred to simply as
energy, is prQpor+ onal to the integral of the square of the pressure with respect
to time. The selection of a time limit is not as critical for energy as it is for
impulse because the pressure squared dependence causes the energy integral to
converge more rapidly to a limiting value. However, it is custimary to use the
same time limit for both energy and impulse, and this was Jone here. The energy
peaked very strongly at the caustic. Energy amplification.- of 15 to 25 (compared
with similitude equations for isovelocity water) were recorded. The curves of
energy amplification factors are similr in shape to the pressure amplification
curves, but the range of variation is greater for energy amplification.
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5.4 SPECTRAL ANALYSIS

5.11.1 Power spectra for Shots 82 and 154, both of which were 900-pound
charges, are presented in Appendix I. The pressure-time curves for Shot 82 are
presented in Appendix I along with the spectra. The pressure-time curves that
correspond to the spectra presented in Appendix I for Shot 15h are in Appendix F

S along with other pressure-time records for Shot 154. The spectra demonstrate that
refraction is a high-frequency phenomenon. The pulses in the shadow zone consist
of low frequencies that are not sharply focused. The caustic arrival contains a
maximum of high frequency content. The spectra for the double arr'ival zone have a
large high frequency content, and show peaks at frequencies corresponding to periods
that are multiples of the time spacing between the two arrivals. Many of the spectra
also show a peak. in the 5000 Hz to 9000 Hz region. This is due to ringing of the
gage-amplifier combination, which was probably a mechanical effect of the amplifier
case.

5.4.2 Shot 82 exhibited higher pressures than other shots. It appeared
that this might be due to ringing. The gage at 239 feet, which recorded the
highest pressure, showed particulariy strong ringing. It was hoped that the
ringing might be such as to cause a peak in The Fourier transform that could be
removed by digital filtering. Unfortunately, no outstanding peaks were found in
the power density spectrum on that gage. This was in spite of the fact that the
oscillations were clearly visible in the pressure-time record. Because the
ringing was so obvious and its frequency could be roughly measured, attempts were
made to filter it out. The filtering had little effect, and the results are not
shown.

6. CLOSE-IN CAUSTICS

6.1 The close-in caustics presented a different pattern. On two of the shots
there was so much scatter that no curve coulI be fitted to the peak pressure vs
depth data. On two other shots the highest pressures were not observed at the
caustic. Instead, the peak pressures were highest in the double arrival region.
The extreme amounts of scatter might be accounted for by horizontal variations in
sound velocity and inhomogeneities in the water. The increase in pressures in the
double arrival region has not been a~counted for.

6.2 Pressure amplifications of 1 to 14 were obtained for the close-in caustic.

This was considerably less amplification than at the convergence zone.

7. SURFACE CHANNEL ARRIVALS

7.1 Shock wave energy also propagated through a sound channel near the
surface. The surface channel arrivals reached the gages about 600 milliseconds
before the conrergence zone arrivals. They were usually weak, but on one shot,
Sho. V,.', they triggered the recorders prematurely. There are many paths possible
in the sound channel. The recorded pulses are very complex because the shock waves
traveled through ,-any liff'.rent paths. Two of the shock wave pressure records are
shown in Figure I3 to ilI istrate tneir complexity. The maximum positive and
negative pressures ar sh-wn in Figure I14. The pressure amplification was about I

16



NOLTR 72-124

PRESSURE

TIME

FIG. 13 SURFACE CHANNEL WAVEFORMS FROM SHOT 152

8. SUMARY AND CONCLUSIONS

8.1 Sound velocity gradients in the ocean and their effects on the
propagation of underwater shock waves from 8-pound and 900-pound charges were
measured. The shock wave measurements were concentrated near caustics, where the
effects of refraction are the greatest. The shock wave peak pressures, impulses,
and energies were compared with what might be expected in isovelocity water, as
given by the similitude equations. Pressure histories and a few shock wave spectrn,
were presented.

8.2 At the convergence zone caustic, pressure amplifications of about 8 ware
generally observed and, on one shot, an amplification of 12 was observed. The
maximum energy amplifications were from 15 to 25. The shock wave impulse was ato,,It
the same as would be expected for isovelocity water. At the close-in caustic, t.,e
pressure amplification was less, from 1 to 4.

8.3 The experiment combined precise measurements of uceanic sound velocity
profiles with precise measurements of the effects thl, sound velocity profiles had
upon the propagation of underwatc, shock waves. Although the sound velocity
profile was relatively constant throughout the 'Ž.periment, variations in
experimental conditions were produced by varying the cha,.L,• weight, burst depth,
and gage depth. The experiment provides a means for .ji dg:. the validity of
theoretical models (such as that in references 7 and 5), which may then be used to
predict effects under more general oceanic ccnditions.
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APPENDIX A

TEST CONDITIONS

The following table, based on a table in reference 5, gives test conditions
for the shots analyzed in this report. Shots that misfired or were not recorded
are not included here. The shot numbers are the shot identification numbers that
were put on the shock wave records at the time of recording and were cone stently
used as the identification while working with the records. Note that reference 5
uses a system of line numberi that do not always match the shot numbers. The ranges
given are the horizontal ranges between the explosions and the gage array. The
ranges are based on the ranges given by the Decca ranging system with corrections
made for the positions of the drop point and the gage array relative to the
antennas of the Decca system. Th-,. times are drop times, which Pre the times at
which the chargev were dropped into the water. The actual explosion times -rere not
determined.
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APPENDIX C

SOUND VELOCITY PROFILES

The sound velocity profiles were based on the raw output from the velocimeter.
The velocimeter was temperature compensated and the response of the pressure
transducer was sufficiently linear so that no corrections had to be made for these
effects. The pressures were converted to depths on the assumption of constant
density of seawater. The correction for change of density with pressure would be
roughly proportional to the depth squared and would change the depth of the bottom
of the deepest profiles by about 100 feet. The profiles have been smoothed
slightlj in the drafting process.
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APPENDIX D

COMPARISON FACTORS

The pressure factor, impulse factor, and energy factor are all defined in an
analogous manner. They are the ratio of the quantity under refractiixg conditions
to the quantity under isovelocity conditions. The similitude equations were used
to get the isovelocity quantities even though they have not been experimentally
verified (in isovelocity water) zo convergence zone ranges.

Pressure factor

F = peak pressure refracting)
P peak pressure (isovelocity)

Impulse factor

FI impulse (refracting)I impulse (isovelocity)

Energy factor

F = enerfy (refracting)
E energy (isovelocity)

The similitude equations used to get the isovelocity quantities for comparison

were:

Peak pressure

p = 2.1 6 • lo0 (WI//R)I'13 lb

in 2

Impulse (to 6.70)

I = 1.h6 Wl/3(Wl3/R)"89 lb-sec
. 2
in

Energy (to 6.70)

E = 2.44 , lo3 wl/3(wll31R)' o in-lb
.2

in

.here:

W = charge weight (pounds)
R = range (feet)

D-1
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APPENDIX F

PRESSURE HISTORIES

The pressure-time curves in this appendix were derived from the analog
magnetic tape recordings. They were played back, digitized, and converted to
standard scales. Because the digitizing equipment had to be started manually, a
long portion of the record was digitized to insure that the shock wave was
ilcladed. A computer program searched through the digital data to find the
beginning of the shock wave. The zero time for each channel is at the first
perceptible rise of the signal above the noise level inherent in the baseline.
Because the noise levels and signals were different among the channels, there is
no common time base for the pressure as presented here.

The p'.essure histories for each shot are identified by the depth, in feet, of
the gage for each pressure history.
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APPENDIX I

FREQUENCY SPECTRA

The frequency spectra were derived from the digitized pressure-cfrme histories.
A computer program in wide use at NOL, MR WISARD, was used to obtain the one-sided
power spectrum density from the pressure-time data, using a Fast Fourier Transform
method. The resolution bandwidth was 127 Hz for all the records that were
analyzed.

The pressure-time records and their spectra are shown together for Shot 82.
For Shot 154, the pressure-time records are in Appendix F. The decibel scale was
arbitrarily chosen. However, the decibel scale shown may be converted to decibels
relative to 1 erg/cm2 /Hz by subtracting 35 dB from the existing scale.
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